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ABSTRACT

The problem of one dimensional plane wave propagation

is considered in isotropic, nonlinear, hysteretic materials.

Solutions for surface loads of step pressure and/or shear,

in cases of loading or unloading are studied, and the presence

of shocks and regions of continuous stress change are discussed.

The mathematical models used are a generalization of

conventional elastic models. The moduli K are assumed to be

functions of thu stress invar T.ant Jl and the moduli G are

functions of both J and the stress deviators. Different1

expressions for K and G are used during loading and unloading,

leading to energy loss through hysteresis.
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LIST OF SYMBOLS)

G, GLD , IUN Shear modulus, shear modull in loading

and unloading.

Go , K Elastic shear modulus, elastic bulk modulus.
g Nondimensional shear modulus.

g 1 ... 7  Coefficients used in variable shear moduli,

Eqs. (24) and (25).

l 2 Stress invariants.

K, KLD K UN Bulk modulus, bulk moduli in loading and

unloading.

k Nondimensional bulk modulus.

k o...4 Coefficients used in variable bulk moduli,

Eqs. (22) and (23).
n Fractional coefficient.

s , s , s , sz  Stress deviators.

t Time.

U Nondimensional dependent variable defined

by Eq. (14).

d, ' , Velocity components in x, y, z direction,

respectively.

x, y, z Cartesian coordinates.

C kk Volumetric strain.

eij Deviatoric strains.

P Mass density.

a , a , a Normal stress components.z
T Shear stress.

Differentiation with respect to time.

Differentiation with respect to U.

Other symbols are defined as they appear in the text.



I INTRODUCTION.

The following is a study of one dimensional wave propagation

of pressure and/or shear for isotropic materials with nonlinear

properties resulting in hysteretic effects. The one dimensional

plane case is considered because it permits easy mathematical

treatment leading to an understanding of the behavior in multi-

dimensional situations. In addition, it can be used as a check

on numerical schemes and gives limiting solutions for two

dimensional situations at high Mach numbers. Solutions for the

one dimensional problems for the step loads studied exist for

all input combinations of pressure and shear, and are unique,

giving at least a hint that the artificially constructed des-

cription of the material does not lead to absurdities.

The mathematical models used are a generalization of con-

ventional elastic models, the elastic moduli K being now

functions of the first stress invariant Jl , while the moduli G

are functions of the stress invariants J 1 and J 2 The functions

K and G differ appropriately during loading and unloading,

leading to energy loss through hysteresis. Following Ref. [11

the governing volumetric relatiuns for initial loading are

3| = 3KLD(3 ) k I

1 LD 1 kk()

while for unloading and reloading

Jl 3 KuN(Jl) kk (2)

I NI k
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where

K > K "0 (3)
UJN- LD

It is noted that Eq. (1) permits determination of J as a

function of Ekk so that the equation can be written in the

alternative form Jl = 3KLD( kk kk without change of meaning.

The alternative form is used for compuLational convenience in

Ref. (11 because it results in simple expressions for the

velocity of compressive shocks.

The deviatoric relations are, for loading and reloading ),

ij= 2 LD(J] J 2)eij (4)

and for unloading

ij 2G uN(01 ' 2)ij(5)

where

GUN GLD >0 (6)

The choice of shear modulus is based on the sign of 2

G being used for 2 > 0, while G is used for J < 0.
LD 2 IN 2-

Note that this paper uses tensile stresses and strains

as positive while Ref. [i] uses compressive stresses and

strains as positive.

Whether GLD or GUN is appropriate to use for the modulus

of reloading is a question still undergoing discussion
and investigation. This peper assumes tentatively that
GLD is appropriate.



II FORMULATION OF THE BASIC EOUATIONS.

To investigate th. propagation of plane waves of either

pressure and/or shear in the material described by Eqs. (1)

to (6), consider the half-space shown in Fig. 1, subjected

to a step load consisting of surface stresses a X and/or o '

Let x, y, z be Cartesian coordinates, x in the direction of

propagation of the disturbances, while y and the shear stress

i are in the plane of the page. The symbols 6, , : repre-

sent the x, y, z components of the velocity, respectively.

The premise of plane waves requires 0 0, and that all

derivatives with respect to y and z vanish.

Designating stress quantities prior to the introduction

of nondimensional variibles by J1 , sx , etc., and considering

the strains to be small, the constitutive relations have the

same appearance as in conventional linear elasticity,

1 " 1 "
9 KJl + 20 S(7)

K + y 0 (8)

9K 1 2G6 5

1 I =Z 0 (9)

T = .-- (10)
2G 2a

but K and G are functions of the stress invariants. Noting

s + s + s 0, Eqs. (7) to (9) combined give

J = 3K (11

I ,
I

I
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The equations of motion are

P t (12)

+  -2i =  p (13)
3 ax a

The five differential equations (7) and (10) to (13) in the

five unknowns s x J , T, u and ('define the problem. Tile

two equations, (8) and (9), serve solely for the determi-
s

nation of sy and s z , s = s = 2 a trivial relationy z 2 'atiilrlto

which will not be carried along.

Following a procedure used in a previous investigation

of plane waves in elasto-plastic materials, Ref. [2],

dimensional considerations require that all stresses and

velocities depend on a nondimensional combination of para-

meters and of the variables x and t,

U = p/ 2i (14)
0t

Introduction of the variable U is cenveniently combined with

the definition of the nondimensional quantities

1 G x G G
0 0 0

G(J 1 , J 2 ) K(J 1 )
G k (16)

0 
0

I



Introducing Eqs. (14) to (16) into Eqs. (7) and (10) to

(13) yields, after elimination of the vel3cities 6 and ,

2
(U 2 0 (17)

J - s 0 (18)
9k I x

2) J + S= 0 (19)

where primes indicate differentiation with respect to U.

These three differential equations apply in regions of con-

tinuous solution, i.e., provided the derivatives are finite.

The differential equations are linear with respect to the

first derivatives J1 $ etc., and homogeazeous. They thus

permit only the solution J 1 = s x = 0, with J constant,

s= constant, T = constant, unless the determinant of the

coefficients of Eqs. (17) to (19) vanishes. Noting that

Eq. (17) depends on T, but not on the two other variables,

while Eqs. (18) and (19) do not contain T, the respective

subdeterminants may be considered separately.

Equation (17) leads to the conclusion that T must be

constant in any region, unless

U 2 - g = 0 (20)

Equations (18) and (19) indicate that s and J will

be constants unless, in the region considered, the determinant

of the coefficients vanishes.

3U - 3k - 4g 0 (21)

. . . . . . . . . . . . .
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While it will be seen in the applications that this does

not actually occur, the possibility of simultaneous variation

of Eqs. (20) and (21) must be allowed for.

The continuous solutions of the differential equations

(17) to (19) do not completely describe the situations which

may be en-ountered. There may be locations of discontinuitie?

(shocks) which must be obtained from other considerations. It

is known that materials with a hardening pressure-volume

relation permit (pressure) shocks. For the materials considered

in this study the velocity of such shocks may be obtained by

integrating the stress-strain relations in uniaxial strain.

In principle, shear shocks are also possible, but such shocks

do not occur for the dependency of G as a function of J con-
2

sidered here, because the material in this respect is a

"softening one".

The next section will consider specific situations for

the material designated Type II Variable Modulus Material,

Ref. [3]. The pertinent point lies not in the details of the

solution, but in the fact that there is always a solution,

and that there is just one solution even if the possibility

of shocks is included.
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III SOLUTIONS FOR SPECIAL CASES.

Typical suitable expressions for the moduli of soils have

been obtained for uniaxial and triaxial test results of the

type represented by Figs. 2 and 3, respectively. The ex-

pressions proposed are of the following form.

For initial compressive loading

=k +kC + k2
*LD ko 1 kk 2 k (22)

For unloading and reloading

kUN k 3 k4 1 *LD (23)

For initial deviatoric loading and reloading

1 - 2 (24)
gLD =1- g 2 Jl g 3 JI

For deviatoric unloading

UN =g7 + g41vi - g5J1 - g6J1 > LD (25)

All constants k. and gi are positive. Further, the above

expressions apply for J < 0, Ckk < 0 and in stress ranges

where all expressions, Eqs. (22)-(25) remain positive. For

the plane case to be studied the value of J2 becomes simply

s 2 + T 2  (26)' J2 4 x

while J remains

,+J =o +a +t (27)
1 x y z

A number of special problems will now be considered.

9<

t L
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Case A - Shear waves, initial loading.

At the time t = 0, a stressless half-space, Fig. 1, is

subjected to a load T , while a 0. Noting that Eq. (14)o xo

gives U = 0 when x = 0, the boundary condition on the surface

is

T(o) = (28)

further, for large values of x , U ,

T(cO) 0 (29)

If a continuous solution exists, Eq. (20),

2
U = gLD (30)

must hold. Noting that J = 0, sx  0, Eqs. (24) and (26)

give

U = 1 - (31)

This simple relation defines the variation of T as a

function of U in any region where T is not a constant. How-

ever, regions where T is simply constant must also be in-

cluded in the construction of a solution. It is important

that Eq. (31) indicates that if In3 is not a constant it will

increase Lowards the surface where U is smaller. Equation

(31) is therefore suitable foz the particular case of loading.

Provided glITI < I there will be a point, U 1 = 1, where the

shear stress begins to increase, see Fig. 4a. Equation (3.)
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describes the solution until the point U 2 , defined by

2U =i I (32)
2 1

is reached. For U < U the stress T simply remains constant,

2V so that the solution shown typically in Fig. 4a is obtained.

The relation Eq. (31) being monotonic, it is impossible

to find an alternate continuous solution to sacisfy the

boundary condition

No solutions containing a discontinuity can be obtained

because the weakening character of the stress-strain relation-

ship in shear, Fig. 3, does not permit discontinuities in

shear.

Case B - Shear waves, unloading.

Let the half-space be initially uniformly stressed by a

shear stress T = T. At the instant t = 0 the surface stress
0

is removed. The boundary conditions are, in this case,

T(o) = 0

(33)
T () =T

To investigate continuous solutions the reasoning of Case A

applies again, but the expression gUN of Eq. (25) must now

be used, so that

U =g 7 + g41r (34)

It is also not possible to construct alternative, in-
appropriate solutions of the type discussed in Case F.
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94 and g 7 being positive. The relation indicates that FTi in-

creases with U, as required for an unloading case. Figure 4b

shows the solution to be T = T for values U > U1 , where

U2 >7 (35)
S> 97  g4 To

The value T = 0 is reached for U2 = 7 and T remains at this

value for U < U2J2

No alternative solution involving a shear shock is

possible, becav'se of the "wcakening" stress-strain relation

for unloading in shear shown in Fig. 3.

If a material has a stress-strain relation for unloading

in which the curvature shown in Fig. 3 is reversed, a shear

shock is possible and would give a solution to the problem.

However, in this case the sign of g 4 in Eq. (25) would be

negative and there would be no continuous solution possible.

The uniqueness and existence requirement would still be

satisfied.

Case C - Pressure waves, unloading.

Consider the half-space subject to a uniform state of

stress defined by the given value J lo < 0 and sxo < 0, so

that the normal surface stress is C =S + . < 0. Atxo Xo 3 lo

the time t 0 the surface load is reduced to a fraction, say

nao . The boundary conditions in terms of the independent

It is also not poss-ble to construct alternative, in-

appropriate solutions of the type discussed in Case F.



variable U are

1
Sx(0) + J J(0) = nax0  (36)

s (c0, M s < 0 (37)x xo

J (-) = < 0 (38)

The determination of continuous solutions is more com-

plicated than in Cases A and B, because the problem concerns

now two unknown functions and s, while the earlier cases

concerned only one unknown. As previously stated the differ-

ential equations (18), (19) permit no other solution than

J constant, s = constant and thus a = constant, unless

the determinantal equation (21) is satisfied. If this is

the case, Eqs. (18) and (19) are inherently equivalent and

only one of them need be retained. It is convenient here

to select Eq. (18)

9k -l =0 (39)
9k 1 x

which relation is to be solved in conjunction with Eq. (21).

Before considering specific cases some general con-

clusions can be drawn from Eq. (39). The quantities g and k
I I

are inherently positive, so that J and sx must necessarily

have the same sign. In the problem of unloading considered
I

here it is therefore inherent that negative values of J1 and
l1

s will represent unloading as long as s < 0, so that theX X

unloading relations, Eqs. (23) and (25), for k and g are

appropriate

*If n is sufficiently small, s will change in sign andIx
Eq. (24) ":'11 be appropriate, For simplicitv, this
case i not pursued here.
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In order to find out if a continuous solution applies in

the present situation, use is made of the fact, stated in the
I I

previous paragraph, that J and s x have the same sign. In

the Rse of unloading from negative (compressive) values

I I

J < 0 s < 0 (40)
1 x

In addition, unloading implies that the derivatives of the

absolute values satisfy

The above inequalities can now be used to see if Eq. (21)

permits a continuous solution. Taking the derivative of

this equation with respect to U one finds the condition

I t

6U = 3k + 4g > 0 (42)

The inequality follows from the fact that U is inherently

positive. From Eo. (23)

d
d (kuN) = "k 4 Jl > 0 (43)

Eq. (25) gives, for T - , the relation gU = +
UN 7 2 94 1s.1 -

2
- g5 J1 - g 6 J1 , so that

d- ( = -- g 4 Sx - gSJ 1 - 2 6 J (44)
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While the first two terms are positive the last one is not.

Combining the last three equations the continuous solution

will apply if

2/3 g41s - JI (3k4 + 4g5 + 896 Jl) > 0 (45)

The first term is inherently positive. The second term is

positive if the expression in parentheses is positive, but

as this depends on the relative magnitude of 8g 6 J 1 < 0

compared to 3k + 4 no general statement can be made.
4 4g5

The above relation investigates the situation on a purely

mathematical basis. The mathematical condition, Eq. (42),

however, expresses simply the fact that the unloading stress-

strain diagram in Fig. 2 has proper curvature as shown. If,

therefore, the value of the material constants give a curve

of this type the mathematical condition, Eq. (45), is in-

herently satisfied and need not be investigated. If the

stress-strain diagram is of this type it is clear, again on

physical grounds, that no (unloading) shock may exist and

the continuous solution of Eqs. (39) and (42) will be the

only solution

To obtain specific solutions when the general relations,

Eqs. (23) and (25), are used, requires numerical solution of

the two Eqs. (39) and (42). However, the principle may be

demonstrated in the special case g 5 g6 
= 0 where a closed

solution can be obtained. In this case g is a function of s

only, while k is a function of JI only so that Eq. ('9) can be

) Continuous, but inappropriate solutions of the type dis-
cussed in Case F may occur.
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integrated. With b = -2/ g 4 /9k 4

g(s x) = [Ck(J 1 )]b (46)

where C is an open constant. This relation must apply at

the head of the unloading wave U = where sx = s and

Jl , which permits the determination of the constant C

[gS / b

C k(J 1) (47)

Substitution of this relation into the determinantal equation

gives

k(JI) 1 b

3U 3k(J + 4g(s) k(J)(48)

Equation (46) may then be useL to determine sx

Sx = 2 g(So) k(Jl) - g7 (49)

Knowledge of the relation between U and J1 and s x and J1

permits a numerical determination of a as a function of Ux

in the region U to U2 where a x varies. The typical shape

of this stress profile is shown in Fig. 6a.

Case D - Pressure Waves, Loading.

Consider the case of a stressless half-space when at the

time t = 0 a normal surface pressurec a < 0 is applied, while
xo

the shear stress vanishes, T = 0. In terms of the variable U
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the boundary conditions are

. a (o) a (0
x () xo

J1.~ 0
(o 0(51)

sx 0

The procedurL for the determination of continuous

solutions, if any, is in principle the same as in Case C,

except that the expressions gLD and kLD have to be used.

In regions of continuous solution Eqs. (18), (19" and the

dete rminantal equation

2 (2
3U . 4g + 3k (52)

must hold.

The possibility of continuous solutions for the present

case exists only if the Eq. (52) Indicates that U decreases

when J < 0, s < 0, while J < 0, s < 0. Substitution of

Eqs. (22) and (24) shows that the term k in Eq. (52) has

exactly the opposite behavior, while the second and fourth

terms of g in Eq. (24) change in the direction required for

continuous solutions. For high stress levels the behavior

of k controls, but no full statement can be made without in-f

troducing specific numbers.

As an alternative to a computational investigation on

the basis of Eqs. (22) and (24) qualitative predictions can

be made based on the character of the uniaxial stress-strain

---------- ------
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diagram implied in these equations, The latter can be used

to find a uniaxial stress-strain diagram which is an approxi-

mation of the actual diagram, Fig. 2. This approximate

diagram, Fig. 5, ought to, and will usually have the same

character as Fig. 2, i.e., it will show a weakening of the

material at low stress ranges up to point C, a hardening

thereafter. The nature of the pressure waves for this

situation is well known, qualitatively. Numerical details

for specific values of the coefficients, Eqs. (22), (24)

could be obtained from Eqs. (18), (19) and (52).

a. If the value of Vtxoi-s less than a n Fig. 5

the solution is continuous, changing between

points U1 and U 2 , .ig. 6b, while the stress is

constant G x for U <U 2

b. If the value of I(xoa , IaAl, is larger than IaT! in

Fig. 5, the result wll be a shock, Fig. 6c. The

velocity is defined by the slope of the line OA in

Fig. 5. The limiting value IaTI is defined by the

statement that OT in Fig. 5 is tangent to the stress-

strain diagram at 0.

c. F~or intermediate streas levels IlC;cl < LIj < IOTJ
there will be a continuous pecursor, followcd by

a shork. 'rhv stress level up to which the solution

in cotl titllltllN Ii defined by point D in Fig. 5, while

the hn'1 vi'-IiiiItv In defined by the slope of the

line 11l). wit, r-oiul I han the character of Fig. 6d.
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Case E - Combined Iressure and Shear.

The situation when the applied surface load is a com-

bination of pressure and shear can be discussed in a general

way, and reduced to a combination of the solutions for

pressure and shear alone.

In the case now considered where a and T must change,x

all three differential equations (17), (18) and (19) must be

considered in regions where the solution cl'anges continuously.

However, the earlier conclusions still hold that T ^an only

change if the determinant, Eq. (20), vanishes, while J1 ' x X

and thus a can only change if Eq. (21) is satisfied.X

Potential solutions can therefore be found in which a changesx

only say from U to U, while T changes only for U to U
1 U2  3  U4

the determination of the distribution remains as outlined in

Cases A to D.

There is, however, also the additional potential possi-

bility that Eqs. (20) and (21)

U2 = g (53)

= 4 g + k (54)

are satisfied simultaneously in a region, U 5 to U 6 . Noting

that g and k are inherently positive, regardless whether the

expressions g and k foi loading, unloading or reloading are

used, the two conditions can not be simultaneously satisfied.
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There can thus be no region where all three quantities J

s x and T change simultaneously. The pieces for consti.ction

of the solution are thus regions of uniform stress, regions

where T only changes, regions where J1  s and thus a x

change, and compressive shocks.

The sequence of the combination of solutions is essentially

the same for all situations, and only one case needs be dis-

cussed. Consider a half-space in which at t < 0, the stresses

areJ =J < 0, T = T everywhere. At thear J =  lo < 0sx Sxo o

instant t = 0 the surface loads are removed. The boundary

conditions for t > 0 are then

o (0) =0o
x (55)

T(o) 0-

i  
lo

s ( =) S s (56)

T(-c) T 0
0 Jo

Due to the fact that in the region of change of T only

J2 changes while J remains unaffected, the construction of

a solution can be started with the region of compressive

change U. , U2 > U3 , U4  This solution is simply the

solution to the problem of pressure relief, when the stress

T on the surface would be maintained, i.e., Case C treated
0

before. Let the values of J and s x at point U2 found in

this manner be J 2 and s 2
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The changes in stress which will occur between

U 3 and U 4 < U2 , are then found for the secondary problem

a(() = T(O) = 0 (57)

J (c) = 121

3 2 2 (58)

2( o) 4 x2 + To

r(T) T 0

The typical history of the stress is shown in Fig. 7,

It is not posiible to start the solution by determination

of the region of change in shear, and find the pressure change

later. The reason is that the solution must be begun from a

boundary where all quantities J. I sx , T are known. This

is only true frr U =, Eqs. (56). At U = 0 only the value of

a =  Jl + s is known, not J and s separately.

Other ases lead to appropriate combinations of the

solutions shown in Figs. 4 and 6, which include pressure

shocks .

The reduction of the problem of combined pressure and

shear to a combination of the individual cases implies that

uniqueness and existence found in Cases A-D, automatically

apply h re.

1 .
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Case F - Elimination of ultiple Solutions.

In footnotes in Cases A, B and C mention was made of

additional "inappropriate" oontinuous solutions. The following

will give a typical example and show that such solutions, while

mathematically correct, should be dismissed on physical grounds.

This dismissal is based on the requirement that any solution

containing a singularity, in this case a step discontinuity in

the load at x=t=0, must be obtainable by a limiting process

from a rapidly but monotonically changing surface load.

Consider a variation of Case B of unloading in shear,

where the shear stress on the surface is not completely removed,

but reduced from T to nTo , where 0 < n < 1. The boundary con-
0

ditions are then

t (0) = nt

(59)

These boundary conditions can be satisfied by using Eq. (34)

for unloading from T to nT , resulting in the monotonic
0 0

stress history ABC shown in Fig. 8a. However, it 'As also

possible to use Eq. (34) beyond point B reducing the shear

stress to a lower level, n1T < nT , point B in Fig. 8b.

The surface boundary condition can still be satisfied by

obtaining from Eq. (31) a continuous solution where T rises

to the required value nT0 as indicated in Fig. 8b, points C C.
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Points CC1 for a continuous solution with a rise in stress are

in the required location, closer to the surface than point B

because gLD < gUN applies for reloading.

In the alternative solution the time history of the stress

at any point is not monotonic. Without going into details, the

concept of characteristics requires that the solution to the

problem of a rapid but gradual change of the surface stress

from T0 to nT would result in a monotonic stress history. The

solution shown in Fig. 8b is therefore to be dismissed. If

equivalent nonmonotonic results can be constructed for other

problems they are similarly inappropriate.

I

] I
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IV CONCLUSIONS.

The investigation demonstrated that in the simple situ-

ations considered the use of the hysteretic stress-strain

relations proposed in Ref. (3] does not lead to difficulties,

i.e., solutions exist in all cases and are unique. In some

cases uniqueness is obtained only by using an additional

physical consideration outlined in Section III, Case F. It

leads to the conclusion that solutions for the problem stated

here ar~e admissable only if the stress changes are monotonic.

In the case of elastic-plastic materials a similar study

of plane wave propagation was extended to the case of the

superseismic steady-state solution for a step load progressing

on a half-space. It is expected that the present work can

similarly be extended, thereby providing solutions suitable

to check purely numerical approaches.
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